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Ischemia ± exercise as a means to promote peripheral as 
well as central organ preconditioning

Kristian Vissing1*, Benjamin F. Miller2, Kim Ryun Drasbek3, Hans Erik Bøtker4

Exposing tissues to brief periods of ischemia confers resistance to subsequent prolonged ischemia (local ischemic 
preconditioning). Though first described in the tissue undergoing ischemia, a systemic response with protection of remote 
tissues (remote ischemic conditioning, RIC) can be induced by repeated brief ischemia of a limb. RIC can be applied 
clinically to reduce infarct size and/or improve outcomes in patients admitted with acute myocardial infarction or stroke. 
A resembling stimulus and systemic protective effect may be achievable from intermittent occlusion-reperfusion elicited 
by the contraction-relaxation phases during resistance exercise. Moreover, this stimulus may be further enhanced when 
practiced with simultaneous blood flow restriction, referred to as blood flow-restricted resistance exercise (BFRRE). While the 
preconditioning effects of BFRRE and the detailed mechanisms by which RIC and BFRRE may exert protection remain to be 
defined, RIC has been shown to induce organ protection via systemic mediators acting through direct cytoprotection in the 
target organ. The protective processes appear to be partly facilitated by extracellular vesicles (EV) carrying micro RNAs (miRNAs) 
from the site of occlusion to sites of organ damage. Moreover, RIC and exercise regimens may promote tissue rebuilding 
upon repeated application. However, little is known on the effects of RIC versus BFRRE on acute EV-derived responses 
and on chronic peripheral skeletal muscle responses. In the current review, with background in the literature and recent 
experimental discoveries, we discuss the potential of ischemia and/or exercise regimens in promoting peripheral and central 
organ preconditioning. 
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Introduction 
Cardiovascular disease has immense negative effects on global 
population health and life expectancy (Roger et al., 2012). 
The most detrimental acute ischemic events are myocardial 
infarction and stroke. Acute myocardial infarction is often 
caused by atherosclerotic rupture, leading to an inflammatory 
response, thrombosis, and platelet aggregation, further resulting 
in decreased oxygenation of the myocardium and ultimately 
cell death (Heusch and Gersh, 2017). Acute ischemic stroke is 
caused by occlusion of a cerebral artery, resulting in oxidative 
stress, excitotoxicity, immune responses, and cerebrovascular 
dysfunction, which similarly lead to hypoxia and cell death 
(Kuriakose and Xiao, 2020). Organ failure caused by such acute 
ischemic complications collectively constitutes the leading 

cause of death globally and carry a vast socio-economic burden. 
In accordance, 17.6 million people worldwide are estimated 
to die from cardiovascular diseases (which are primarily 
attributed to the 9.5 million from ischemic heart disease and 
the 5.5 million from stroke) (The Global Burden of Disease 
Study, 2017). Annually, 15 million people suffer a stroke 
of whom 1/3 die and 1/3 are left disabled, while the 30-day 
mortality risk is as high as 15% (Feigin et al., 2018). Treatment 
of cardiovascular disease is therefore crucial to alleviate the 
disease burden. 
     In acute ischemic conditions, early and successful restoration 
of tissue perfusion following an ischemic event is the most 
effective strategy to reduce tissue injury and improve clinical 
outcome (Heusch and Gersh, 2017). However, reperfusion 
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treatment strategies may itself inflict further tissue damage, 
referred to as reperfusion injury (Heusch, 2020). Thus, although 
reperfusion treatment strategies continue to progress by 
improved logistics and medical treatment, even optimized acute 
reperfusion treatment may leave patients with chronic tissue 
damage (Heusch, 2020). Yet, the development of effective drugs 
to target the detrimental effects of reperfusion injury has proven 
to be a challenge. In accordance, several pharmacological 
strategies showing convincing effects in animal models of 
ischemia-reperfusion injury have failed to translate into 
clinical benefit (Hausenloy et al., 2019). Consequently, while 
the developments in acute reperfusion therapy has improved 
initial survival from ischemic events (Schmidt et al., 2012), 
the number of patients with chronic ischemic heart disease is 
growing globally. Accordingly, the chronic ischemic conditions 
carry vast disease burdens with more than 35 million people 
worldwide suffering from heart failure, most frequently as a 
consequence of ischemic heart disease (Hofmann and Frantz, 
2013; Heusch et al., 2014). Despite increased survival, heart 
failure patients exhibit a poorer 5-year survival rate than patients 
with most types of cancer and a 1-year mortality of nearly 50% 
(Chen et al., 2013). In addition to the affected central organ, 
chronic ischemia may also trigger activation of unfortunate 
compensatory metabolic and remodeling processes in peripheral 
organs such as skeletal muscle. For instance, N-terminal pro-
brain natriuretic peptide (NT-proBNP) elicited from stress 
imposed on the myocardium is considered a plasma marker 
of cardiovascular disease severity. In accordance, NT-proBNP 
is associated with loss of muscle mass (Martins et al., 2014; 
Ikeda et al., 2016) potentially partly explaining why symptoms 
of cardiovascular complications include intolerance towards 
physical effort and increased fatigue development (Clark et al., 
1996; Dhakal et al., 2015). Loss of skeletal muscle mass can 
severely deteriorate muscle contractile and metabolic properties 
to negatively affect locomotion and whole body metabolism 
and loss of muscle mass and strength constitute strong 
predictors of all-cause mortality (Hülsmann et al., 2004; Szulc 
et al., 2010; Srikanthan and Karlamangla, 2014). Consequently, 
there is therefore great perspective in identification of practical 
strategies to counteract the detrimental consequences of chronic 
ischemic conditions in central and peripheral organs. 
     Intriguingly, the application of transient sub-lethal ischemia-
reperfusion under resting conditions (i.e., remote ischemic 
conditioning, RIC) seems to preserve against tissue degradation 
of acute lethal ischemia. On the other hand, whereas this ability 
of RIC to counteract acute ischemic complications in the heart 
and the brain has received considerable attention (Heusch et al., 
2015; Kleinbongard et al., 2017), the potential exploitation of 
transient occlusion-reperfusion inherent of muscle contraction 
during activity (i.e., exercise conditioning) has so far received 
much less attention. However, evidence exist that RIC and 
exercise conditioning may share signals to preserve cellular 
health. Among such signals, recent findings suggest that both 
RIC and exercise regimens can promote release of extracellular 
vesicles (EVs) containing a cargo of miRNA associated with 
cellular survival and/or protein turnover (Frey et al., 2019; 
Just et al., 2020; Lassen et al., 2021) to potentially engage in 
preconditioning processes. 
     In the current narrative review, we will first address how 
ischemia ± exercise stimulation (collectively referred to by 
us as conditioning-based strategies) can be conducted to 
potentially produce effects. Next, we will then address how 
these stimulators may share inducing cues and mechanisms, 
with special emphasis on the ability of EV-carried miRNA. 
Finally, we will address some recent findings that support the 
effect of ischemia ± exercise on EV-carried tissue effects and/
or functional effects. This narrative is visualized as an event 
scheme in Figure 1.  

Conditioning-based intervention strategies
Ischemic stimulus - RIC
RIC constitutes a new treatment modality that has been shown 
to exert powerful protection against ischemia-reperfusion 
injury in the heart and brain as well as other tissues in animal 
models, and RIC has successfully been translated into clinical 
use (Heusch et al., 2015; Bøtker et al., 2018). Organ protection 
by RIC can be achieved simply by conducting 3-4 five-minute 
cycles of limb ischemia and reperfusion using a tourniquet, 
a simple blood pressure cuff, or an automated programmable 
pressure cuff. In this procedure, the occlusion pressure is set 
to completely obstruct both arterial supply as well as venous 
return (Kharbanda et al., 2002). A specific advantage of RIC 
is its easy application during ongoing ischemia of the target 
organ. This has been exploited in animal models and humans 
to show that RIC reduces injury during evolving myocardial 
infarction (Bøtker et al., 2010; Sloth et al., 2014; Kleinbongard 
et al., 2017) and stroke (Hougaard et al., 2014), with the 
magnitude of tissue damage (infarct size) being the main 
prognostic determinant (Hausenloy and Yellon, 2013). While 
the mediators and mechanisms of RIC are yet to be firmly 
established, RIC has been shown to induce cytoprotection, 
to improve endothelial function and microcirculation, and to 
modify inflammation, suggesting a potentially powerful tool 
to simultaneously counteract detrimental biological processes 
involved in the development of tissue damage. RIC may have 
further potential because continued RIC after myocardial 
infarction seems to induce sustained benefits during the 
following adverse remodeling of the heart (Wei et al., 2011).

Exercise stimulus. High load resistance exercise (HLRE)
Locomotion is partly reliant on skeletal muscle contractile 
capacity as dictated by neuromuscular properties, including 
muscle myofibrillar mass and function. To stimulate muscle 
accretion and strength development traditional HLRE principles 
employ high mechanical loading (> 75%, which for most 
individuals corresponds to a 8-12 repetition range) through use 
of resistance training equipment and relatively long recovery 
time (typically 3-5 minutes of interset recovery) between 3-5 
sets (American College of Sports Medicine, 2009). During 
HLRE, the muscle produces a large increase in tissue pressure 
during contraction immediately followed by a large decrease in 
tissue pressure upon cessation of contraction, leading to brief 
occlusion-reperfusion during each movement cycle. Single-
session HLRE has been found to stimulate acute transient 
increases in net muscle protein synthesis (Phillips et al., 1997; 
Miller et al., 2005) and repeated HLRE training has been found 
to produce cumulative increases alongside muscle hypertrophy 
(Brook et al., 2015; Damas et al., 2016). Increased ribosomal 
activity (Stec et al., 2016; Brook et al., 2017) and satellite 
cell-mediated addition of myonuclei to existing muscle fibers 
(Petrella et al., 2008) has been suggested to contribute to 
muscle hypertrophy and remodeling. Furthermore, HLRE has 
recently been reported to increase mitochondrial function (Porter 
et al., 2015) and stimulate angiogenesis (Holloway et al., 2018), 
which may partly serve to support metabolic costs related to 
anabolic or remodeling events. HLRE is regarded feasible as 
well as efficient in improving functional recovery in chronic 
heart failure patients as well as patient suffering from ischemic 
stroke, provided that disease severity is considered low to 
moderate (Selig et al., 2010; Severinsen et al., 2014).

Ischemic ± exercise stimulus. Low-load blood flow-restricted 
resistance exercise (BFRRE)
Chronic ischemic disease severity as well as some other specific 
clinical conditions (e.g. rheumatoid arthritis or recovery from 
orthopedic surgery) may impede the use of high mechanical 
loading. Interestingly, low-load traditional resistance exercise 
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regimens have proven effective in stimulating muscle protein 
synthesis as well as in promoting muscle hypertrophy and 
strength gains (Burd et al., 2010; Mitchell et al., 2012), provided 
that much greater work volumes are conducted with low-load 
regimes compared to HLRE regimes. Interestingly, BFRRE 
can offer low work volume as well as low loading. BFRRE 
accomplish this by using inflatable cuffs to achieve partial 
occlusion of arterial blood inflow and near-complete/complete 
occlusion of venous outflow. Standardization of the relative 
degree of occlusion of arterial inflow (most often approximately 
50%) can be established from initial individualized assessment 
of the cuff pressure required to promote complete obstruction 
of arterial inflow (Sieljacks et al., 2018). The blood flow 
restriction is combined with loading as low as 20%-50% of 
predetermined maximum dynamic strength. Usually, 3-4 sets of 
resistance exercise repetitions are conducted to a state of near 
or complete volitional failure with very short interset recovery 
(most often 30-60 seconds) during which time the occlusion 
is maintained. Using such principles has been demonstrated to 
accelerate fatigue development and increase muscle pressure 
due to metabolic build up and muscle water retention (Fahs 
et al., 2015). A single bout of BFRRE has been reported to 
stimulate muscle protein synthesis (Fujita et al., 2007; Fry et al., 
2010) and ≤ 6 weeks of BFRRE training has been reported to 

produce strength gains as well as both whole-muscle and fiber 
hypertrophy (Nielsen et al., 2012; Farup et al., 2015).

Underlying cues and mechanisms
Similarities and differences between RIC and BFRRE
Original ly  developed to  augment  muscle  accret ion, 
BFRRE research has predominantly been directed towards 
improvements in exercise performance and musculoskeletal 
rehabilitation. The mechanisms underlying the muscle 
hypertrophic effects of BFRRE have been suggested to be 
related to heightened growth hormone signaling, mechanical 
stress adhering to cell swelling from venous pooling on cell 
pressure or length changes from loaded contractions, as well 
as altered patterns of neuromuscular recruitment (Pearson 
and Hussain, 2015; Rindom and Vissing, 2016; Rindom et al., 
2019; Wernbom and Aagaard, 2020). Its parallels to RIC are 
not thoroughly investigated, but many common features exist 
in the cardioprotective signaling initiated by exercise and RIC. 
Thus, release of endogenous opioids (Michelsen et al., 2012), 
cytokines (Cai et al., 2012; Dorneles et al., 2016) , nitric oxide 
(Calvert et al., 2011) and most recently EVs (Giricz et al., 2014; 
Vicencio et al., 2015; Just et al., 2020; Lassen et al., 2021), 
support that RIC and BFRRE share a variety of hallmarks that 
may induce cytoprotection, improve endothelial function and 

Figure 1. Event scheme of ischemia ± exercise preconditioning. Stimulus: transient sub-lethal remote ischemia and/or occlusion-reperfusion 
evoked from remote ischemic conditioning (RIC), low-load blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise 
(HLRE). Signal release: signals consisting of extracellular vesicle (EV) carried miRNA released from host cells at the origin of ischemia-
reperfusion to remote organ. Effects: the EV-derived miRNA engage in target cell regulatory mechanisms to counteract cellular degradation or 
to stimulate healthy function.
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microcirculation, and modify inflammation, and suggest that 
they constitute at least partially analogous modalities (Paradis-
Deschênes et al., 2016). 
     In contrast to RIC, the restriction strategy by BFRRE does 
not completely abolish, but only limits arterial blood flow, 
while the venous return is completely obstructed (Loenneke 
et al., 2012). Hence, it can be argued that ischemia, defined as 
insufficient blood flow required to meet metabolic needs, may 
not constitute a similarly crucial prerequisite for stimulating 
either tissue protection or musculoskeletal rehabilitation. 
Rather intramuscular metabolic stress, defined as decreases in 
phosphocreatine and intramuscular pH independent of blood 
flow, seems to be a contributing factor although it still remains 
to be determined how such metabolic stress responses relate to 
tissue protection as well as musculoskeletal rehabilitation (Okita 
et al., 2019). On the other hand, BFRRE has been reported to 
produce substantial reductions in myocellular oxygen tension 
(as a result of vascular occlusion and exercise combined) as 
well as shifts in hemodynamics due to occlusion-reperfusion 
and reactive hyperemia upon cuff release (Ganesan et al., 
2015; Lauver et al., 2017; Reis et al., 2019), which suggest that 
BFRRE to some extent resemble the ischemia and reperfusion 
of RIC.
     Alternative triggers, including peripheral nociception 
(Jones et al., 2009; Gross et al., 2011; Gross et al., 2013), 
direct peripheral nerve stimulation (Redington et al., 2012), 
and noninvasive transcutaneous nerve stimulation (Merlocco 
et al., 2014), and electroacupuncture (Redington et al., 2013) 
are capable of recapitulating the infarct-sparing effect of RIC 
by stimulating known cardioprotective signaling pathways 
(Hausenloy et al., 2016).
     Regardless, if distinct from RIC, which clearly induces 
intermittent ischemia, the hypoxia induced by BFRRE seems 
capable of inducing sufficient metabolic stress to mobilize 
endogenous protective mechanisms resembling RIC by yet-
unidentified similar mechanisms (Pearson and Hussain, 2015). 
The mechanisms may include muscle stem cells (Nielsen et al., 
2012; Wernbom et al., 2013; Aguayo et al., 2016), secretion 
of cytokines or growth factors (Wernbom et al., 2013; Layne 
et al., 2017), and potentially miRNAs delivered to remote 
locations by extravesicular transport (Giricz et al., 2014; Li et 
al., 2014). Noteworthy, with regards to safety during physical 
rehabilitation in risk populations, BFRRE, similar to RIC, 
seems to attenuate the amplification of the exercise pressor 
reflex seen during conventional exercise (Sprick and Rickards, 
2017b, a). 

Signaling between remote tissues via EV carried miRNA
While several mechanisms have been proposed to explain RIC 
induced cytoprotection (Schmidt et al., 2015; Kleinbongard et 
al., 2017; Heusch, 2020), these have so far failed to translate 
into pharmaceutically based clinical practice. EVs have more 
recently been proposed to constitute systemic mediators able 
to affect remote cellular events, leading to remote tissue 
protection. EVs characteristics and their potential role in RIC 
have recently been exhaustively reviewed (Chong et al., 2019; 
Frey et al., 2019). In brief, EVs are released from a variety of 
different cell types and detected in most body fluids including 
blood, urine, and saliva (Raposo and Stoorvogel, 2013). Their 
surface is composed of a lipid bilayer membrane and ranges 
in size from 30-1000 nm in diameter. In the host cell, EVs are 
formed and released in several different ways including being 
released from multi-vesicular bodies and budding from the cell 
membrane (Février and Raposo, 2004). The secreted EVs may 
carry specific components that affect the function and identity 
of the host cell. Furthermore, the magnitude of EV release, 
EV content and/or EV surface marker profile can vary by 
physiological condition of the organ and reflect the immediate 

state of the secreting cell (Jakobsen et al., 2015; French et al., 
2017). The released EVs can home in on local and/or distant 
tissue by targeted cell receptor-ligand interactions. Uptake of 
EV cargo in the forms of proteins, lipids, and nucleic acids by 
the target cells can occur through e.g. endocytosis, direct plasma 
membrane fusion, or phagocytosis (Mulcahy et al., 2014; Pitt et 
al., 2016; French et al., 2017). 
     Noteworthy, the EV cargo, among signaling substances, is 
observed to be widely enriched with different RNAs, including 
small non-coding miRNAs (Bartel, 2004; Bartekova et al., 
2019). Characterization of miRNA and their potential role in 
RIC has also recently been exhaustively reviewed (Shvedova 
et al., 2016; Nazari-Shafti et al., 2020). In brief, miRNAs 
are endogenous ~22 nucleotides non-coding RNAs that are 
believed to play an important role in directing the degradation 
of messenger RNA (mRNA) or the silencing of mRNA 
translation in the cytoplasm as well in nuclear compartments 
(Bartel, 2004). To this end, miRNA expression and release 
from the host cell upon a given physiological cue and uptake 
in remote target cells (via EVs or otherwise) provide an avenue 
to interfere with the translation of degradative components in 
target cells experiencing e.g. ischemia-reperfusion damage. 
Extracellular release of miRNA expressed in host cells are not 
outright dependent on EVs. However, although miRNAs are 
assumed to exhibit greater extracellular resistance to RNase-
mediated degradation than mRNAs, greater stability is ensured 
by packaging and transporting in EVs (Shvedova et al., 2016).   

Signals and effects with ischemia ± exercise
Some common underlying mechanistic traits of RIC and 
exercise appear to adhere to EVs and/or miRNA. With regards 
to EVs, plasma EV concentrations have previously been 
reported to increase immediately following RIC as well as 
traditional exercise interventions. Furthermore, plasma EVs 
secreted after RIC have been reported to reduce infarct size 
after myocardial ischemic reperfusion injury (Minghua et al., 
2018; Lassen et al., 2021). 
     With regards to miRNAs e.g. myocardial miRNA144-
3p (miR144-3p) levels have been reported to be reduced by 
IR injury, with this reduction attenuated by RIC (Bøtker et 
al., 2018). RIC has also been reported to produce increased 
circulatory exosome levels, while exosomes enriched with 
miR22 and miR451a from anoxic cultured mesenchymal stem 
cells and cardiomycyte progenitor cells have been reported 
to mitigate cardiac injury. This invites the idea that treatment 
with specific miRNA loaded into exosomes may provide 
protection against acute and chronic effects of myocardial 
ischemia-reperfusion injury in patients (Emanueli et al., 
2015). Several studies using traditional exercise regimes have 
observed exercise-induced release of miRNAs circulating free 
in the plasma or EV-carried. As reported in a previous review 
(Polakovičová et al., 2016), most of these studies primarily 
describe expression changes in muscle-associated miRNA 
(myo-miRs), while the direct physiological impact of EV-
derived miRNA on exercise adaptations is so far lacking. 
However, miRNAs have been shown to be involved in multiple 
processes, including stem cell regulation (Cheung et al., 2012). 
Interestingly, high-frequency BFRRE, has previously been 
reported to substantially induce muscle stem cell proliferation, 
which could relate to ongoing muscle regenerative or 
remodeling events as well as muscle growth (Nielsen et al., 
2012). Noteworthy, muscle damage has also been observed to 
induce proliferation of fibro-adipogenic progenitors (FAPs) in 
muscle tissue and FAP have been suggested to be regulated by 
EVs released from muscle stem cells (Fry et al., 2017). 

Acute effects of ischemia  ± exercise
Since occlusion-reperfusion of BFRRE resemble that of RIC, 
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we recently investigated the acute effects of single-bout BFRRE 
on plasma EV characteristics and impact on skeletal muscle 
stem cell and FAP proliferation. Moreover, we investigated the 
EV miRNA cargo profile including pathway association analysis 
(Just et al., 2020). To our knowledge, no other studies have 
investigated the impact of BFRRE on EV characteristics and 
its potential conditioning effects at present. Although BFRRE 
did not produce changes in plasma EV content, profiling of EV-
carried miRNAs revealed a number of miRNA changes, which 
showed pathway association to canonical pathways involved 
in muscle protein synthesis and muscle protein degradation 
respectively. Moreover, when exposing primary muscle stem 
cells and FAPs to the BFRRE-induced EVs, proliferation 
was activated. Finally, EV surface marker analysis suggested 
that BFRRE stimulates EV release from blood cells (Just et 
al., 2020). Interestingly, miR451a (which has been tied to 
mitigation of cardiac injury) and hypoxia-inducible miR-
182–5p (which has been shown to enhance HIF1α signaling, 
protect cardiomyocytes from hypoxia-induced apoptosis) were 
observed to be upregulated with BFRRE (Just et al., 2020). 
This suggests that both RIC and BFRRE may partly function 
through these EV-carried miRNA to engage in preconditioning 
processes, but this requires further investigation. Whereas these 
findings are interesting in their own right, some limitations 
of our study design should be emphasized. Firstly, the 
abovementioned study served as a proof of concept, but did not 
include comparative experiments that allowed us to distinguish 
the effects of ischemia per se from the effects of exercise per 

se (i.e., RIC versus BFRRE). Therefore we can merely claim 
that our results support the hypothesis that BFRRE possesses 
the ability to affect skeletal muscle remodeling through EV-
carried miRNAs. In ongoing follow-up studies (yet published) 
we compared the acute EV and EV-carried miRNA responses 
between RIC, BFRRE, and HLRE in healthy individuals as 
well as in congestive heart failure patients (CHF). Furthermore, 
in these follow-up studies we included comparison to non-
intervention controls and age-matched controls to distinguish 
true effects of intervention from the effects of confounding 
factors such as dietary conditions or stress related to tissue 
collection (Vissing et al., 2005) and age. Secondly, in the study 
by Just et al. (2020) we demonstrated that BFRRE was confined 
to localized muscle, while not extending to remote tissues 
of central organs such as the heart or the brain. In follow-up 
studies in cellular and animal models we have investigated 
the acute effects of human plasma-derived EVs stimulated by 
RIC, BFRRE, HLRE, and non-exercise control conditions in 
ischemic tissue.

Chronic effects of ischemia  ± exercise
In a previous study, we observed that prolonged RIC treatment 
did not improve left ventricular ejection fraction, but did 
promote increased skeletal muscle function and reductions 
in blood pressure and NT-proBNP in patients with chronic 
ischemic heart failure (Pryds et al., 2017). In continuation of 
these findings, in the abovementioned collaborative research 
initiative, we investigated the effects of prolonged (6 weeks) 

Figure 2. Overview of comparative study on 6 weeks of differentiated conditioning intervention. Basal muscle and blood samples were 
collected and functional capacity was tested before and after a 6-week intervention period consisting of RIC, BFRRE, and HLRE stimulation 
3 times per week for healthy young individuals and congestive heart failure (CHF) patients (in separate studies), respectively. The studies 
also included non-exercise control subjects (not shown). Throughout the 6-week intervention period, D2O was orally administered to the 
participants with blood collected every second week to measure tracer enrichment. Myocellular adaptations relating to metabolism and 
contraction as well as endurance-type and resistance-type capacity, was measured. RIC, remote ischemic conditioning; BFRRE, blood flow 
restricted resistance exercise; HLRE, high-load resistance exercise; D2O, deuterium oxide.
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RIC, BFRRE, HLRE, and non-exercise control intervention 
in heart, brain, and muscle (see Figure 2). During the 6-week 
intervention period, deuterium oxide (D2O) was continuously 
administered. This approach of labeling of newly synthesized 
skeletal muscle proteins combined with skeletal muscle biopsy 
collection and mass spectrometry allowed the assessment of 
new cumulative myofibrillar and mitochondrial protein as 
well as RNA synthesis (Miller et al., 2020). One advantage 
of this approach is that it reflects genuine individual habitual 
preferences for activity and diet over the full course of the 
intervention period, as opposed to the frequently arbitrary 
standardization inherent of experimental approaches in studies 
on acute synthetic effects.
     While data analysis related to plasma characterization and 
biological effects are still ongoing, we have recently published 
results on chronic adaptions in skeletal muscle in healthy 
individuals and in CHF patients, respectively. In healthy 
individuals, we demonstrated that BFRRE and HLRE were 
equally capable of stimulating cumulative mitochondrial and 
myofibrillar protein synthesis as well as cumulative RNA 
synthesis compared to non-exercise controls, collectively 
suggesting that myofibrillar growth, mitochondrial biogenesis 
and ribosomal biogenesis were stimulated (Groennebaek 
et al., 2018; Sieljacks et al., 2019). Moreover, we observed 
increased mitochondrial respiratory function and increases 
in both endurance exercise and resistance exercise capacity. 
Consequently, BFRRE and HLRE both seem very capable 
of promoting dual potentially health beneficial effects on 
properties relating to contractile and metabolic properties and 
suggest that the low loading of BFRRE is feasible and effective 
to counteract myopathy or decay in skeletal muscle health in 
various clinical settings (Vissing et al., 2020). 
     In a follow-up study in CHF patients, we therefore 
consequently employed a quite similar design to study the 
effects, except in this study we compared prolonged RIC 
and BFRRE intervention (Groennebaek et al., 2019). The 
results of this study showed that BFRRE is feasible for CHF 
patients (i.e., no records of adverse effects and almost full 
compliance). Moreover, the results showed that BFRRE, 
but not RIC, was able to promote improvements in skeletal 
muscle mitochondrial function and in functional capacity to 
the extent that it was clinically relevant. The lack of functional 
improvement with RIC is somewhat in contrast to our previous 
findings (Pryds et al., 2017). Possible explanations include 
differences in magnitude of RIC stimulation (i.e., more high-
frequent stimulation in the Pryds-study) or differences in the 
methodological approach to assess muscle strength. Moreover, 
although, ribosomal biogenesis was observed to be higher 
with BFRRE than non-exercise control, myofibrillar and 
mitochondrial protein synthesis was not. We speculate that a 
degree of anabolic resistance can explain these results in CHF 
patients compared to the young healthy subjects described 
above. To obtain further insight on the extent to which 
anabolic resistance is a consequence of disease or related to 
the advanced age of the CHF patient requires a comparison 
to age-matched healthy individuals and identification of the 
magnitude of stimulation to overcome anabolic resistance. We 
are currently investigating this. Nonetheless, BFRRE seems to 
be both feasible and effectual in improving important features 
of skeletal muscle. 

Summary and perspectives
The resemblance in some ischemic cues and mechanisms 
adhering to EV-carried miRNAs between RIC and BFRRE 
suggest that they both possess the capability to infer remote 
tissue conditioning in central organs. Moreover, low-load 
BFRRE possess similar capability as HLRE in producing 
peripheral skeletal muscle health beneficial adaptations, which 

also seem to involve EV-carried miRNA. Consequently, 
BFRRE may possess simultaneously dual ability to promote 
central as well as peripheral conditioning, but this awaits further 
information by ourselves and others on the comparative effects 
of differentiated interventions. This approach entail great 
perspective as it may serve to elucidate efficient low-intensity 
practical regimes to counteract acute and chronic effects of 
ischemic disease and serve as platform for using naturally 
secreted EVs as carriers of nucleic acid based therapeutics. 
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